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Abstract

The interpretation of text in fragile historical records remains a challenge today.
One of these records is the Herculaneum papyri, a set of fragile scrolls from
over 1900 years ago. In this paper, we outline attempts to reconstruct text from
carbon ink papyrus by applying deep learning methods. We demonstrate the
efficacy of convolutional neural networks (CNNs) and transformers in detecting
and reconstructing text from 3D voxel inputs. We propose a variation of transformer
models, the UNet Vision Transformer, and compare its advantages and limitations
with other baseline models.

1 Introduction

In 79 CE, Mount Vesuvius erupted and buried the cities of Pompeii and Herculaneum in ash and
pumice. Among the many buried buildings was the house of Julius Caesar’s father-in-law, which
contained a massive library of literary works. Over 1,800 scrolls have been identified, making them
one of the largest surviving collections of ancient literature.

Attempts to unroll the fragile papyrus scrolls in the 1750s mostly resulted in damage, but recent
high-resolution 3D X-ray CT scans have been used to create reconstructions of the scrolls, but due
to the ink being radiolucent we cannot discern the content by the human eye alone. Recently, a
paper by Parker et al. (2019) demonstrated that by training a 3DCNN on the texture differences and
microscopic bumps on the scrolls from the 3D X-ray CT scans, ink location can be inferred. However,
this model was trained on a limited dataset for small sections of the scrolls. As a subset of the overall
challenge of reconstructing and reading these scrolls, our objective is to develop a model that can
extract information about the ink location of the unravelled fragments.

To tackle the binary segmentation problem with voxels as input modality, we proposed a UNet-ViT
model and compared it to UNet, 3D Vision Transformer and a 3D-CNN baseline we re-implemented.
We argue that the UNet structure should be able to capture detailed local features, while ViT captures
global information. However, non of our models were able to generalize on unseen data, and training
often becomes unstable. With some experimental results on the validation set, we discovered vanilla
UNet is likely the most effective among all models.

2 Background and Data

The Vesuvius dataset provides us with scroll fragments from previous unraveling attempts. These
fragments have been scanned using high resolution 3D X-ray tomography, providing us with informa-
tion about their texture and thickness. The resulting 3D scans are stored as 65 2D tiff files, with each
file representing a slice in the z-direction.

Although the ink is not visible in the X-ray scans, the ink is opaque under infrared light. An infrared
photo of the surface and a carefully labeled binary mask is provided as 2D label ground truth and
masking of valid data.
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Due to the scarcity of the scrolls, we are only provided with three scroll fragments as the training
set. Since each scan has extremely high resolution ( 4um), we downsampled all files by a factor of 2
before training. To expand the miserably small training set, we added random scaling and random
flips when training the models.

Figure 1: Image of a Vesuvius dataset fragment. On the left, an infrared image of the fragment. On
the right, a hand-labelled mask of the original fragment.

3 Related Work

X-ray image reconstruction is a broad field attempted by Mocella et al. (2015) and Bukreeva et
al. (2016) previously. Classical works focus on X-ray computed tomography (XCT) and X-ray
phase-contrast tomography (XPCT) techniques. These methods involve projecting the penetrating
radiation of an X-ray source onto the papyri and reconstructing the image based on X-ray absorption
and refraction. The carbon ink in the papyri can be differentiate via the absorption and refraction
properties, creating outlines of how the ink looks.

More recently there has been work done by Parker et al. (2019) to detect and reconstruct the ink text
from the papyri into a human-readable format. The authors of the paper apply a 3D convolutional
neural network (3DCNN) to reconstruct the text from the tomography data, demonstrating some
success with coarse resolution reconstructions. The Vesuvius dataset is a culmination of these works,
and provide the dataset for our experiments. In our experiments, we build on the authors’ works to
reconstruct ink text from the data.

Vision transformers (ViT) are known to be strong alternatives to convolutional neural network (CNN)
architectures. Dosovitskiy et al. (2020) have previously demonstrated that ViT can obtain state of
the art performance compared to CNNs, while also requiring far less computing resources. Several
variations of vision transformers have also found success in their own areas. Examples include Wu
et al. (2021) convolutional vision transformers (CvT) and He et al. (2021) masked autoencoders
(MAE). These models build on the ViT model by applying certain changes to bits of the architecture.
However, none of them have previously been applied to the task of reconstructing ink samples from
3D X-ray tomography data.

U-Nets (UNet) are known for their strong performance in image segmentation tasks. Ronneberger,
Fischer, and Brox (2015) demonstrated the architecture consisting of a contracting path and an
expanding path allows for strong precision in identifying image boundaries. In addition, UNets are
known for quick training, boasting less than 1 second of runtime on a GPU. The UNet Transformer
model by Petit et al.2021|combines UNet and transformer models to track relationships in highly
complex image data. We extend the method to reconstructing ink text in 3D X-ray tomography data.



4 Methods

In addition to the baseline 3DCNN model, we explored UNet and Vision Transformer (ViT) model
and the combination of both models. On each training step, we sample an chunk of fixed size voxel,
centered on a 2D pixel where the mask is valid. On the Z dimension, we only take slices 16 48, since
not all 65 slices contain useful information and loading all slices takes substantial amount of memory.

4.1 3DCNN Re-implementation
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Figure 2: The 3DCNN architecture. The encoder is composed of 3D convolution layers, ReL.U
activations, and 3D batch norms. The decoder is composed of linear layers and ReL.U activations to
recreate the image.

To start we utilized an auto-encoder/decoder model based on the 3DCNN used by Parker et al. (2019).
The encoder part of the model consists of three 3D convolution layers, which are used to extract
high-level features from the input fragments. The extracted features are then passed through a rectified
linear unit (ReL.U) activation layer to introduce non-linearity and improve model performance. The
final layer in the encoder is a 3D batch normalization layer, which helps to normalize the feature
maps and improve the convergence of the training process.

The decoder part of the model is designed to reconstruct the input image from the encoded features. It
consists of a series of linear layers and ReLU activation layers. The linear layers are fully connected
layers that take the encoded features as input and reconstruct the original image. The ReLU activation
layers are added to introduce non-linearity and prevent overfitting of the data.

During training, the model takes 32 random patches of the fragments as input. The fragments are
split into patches to increase data and the squares are randomly chosen to prevent overfitting. The
model is trained using stochastic gradient descent (SGD), which updates the model parameters based
on the gradient of the loss function with respect to the parameters.

4.2 3D Vision Transformer (3D ViT)

A naive attempt to encode voxelized data is to employ a 3D vision transformer (3D ViT). A 3D vision
transformer is similar to ViT, but it slices patches in three dimensions - height, width, and depth. A
class embedding is only added to the Z dimension since binary classification is done only on the Z
dimension.

4.3 UNet

We construct a UNet based on the work of Ronneberger, Fischer, and Brox (2015). The downsampling
layers are each composed of a max pooling layer, two convolutional layers, two batch norm layers, and
two ReLU activations. These outputs are fed into upsampling layers each composed of a transposed
convolution layer, two convolutional layers, two batch norm layers, and two ReLLU activations. The
residual connections between downsampled and upsampled vectors facilitate loss propagation.
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Figure 3: On the left, the architecture for the UNet model. On the center and right, the components
used in the model.

4.4 UNet Vision Transformer
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Figure 4: On the left, the architecture for the UNet vision transformer. On the center and right, the
components of the model.

UNet has been successful in image segmentation problems, while Vision Transformer is excellent in
capturing global dependencies. We attempt to combine the two to take the best out of both worlds.
The UNet-ViT has three stages, (i) encode each patch with the convolution layers and max pooling,
(ii) employ an Vision transformer network to encode the interactions between patches, (iii) decode
each patch an obtain a binary mask with deconvolution layers. The model slices the voxels into
patches in the horizontal and vertical dimensions, leaving depth as channel feature. Then convolution
is independently applied on each patch. The resulting latent vector of each patch is passed to ViT as
input features.

5 Results

Since we have limited access to the public testing set (Kaggle limits each group 5 attempts per day),
we trained the model on two of the three fragments, and evaluated the model on the third fragment.

We measure the similarity of our prediction and ground truth by applying the Sorensen-Dice coefficient
at a real factor 0.5 to measure precision and recall. This is equivalent to applying a F0.5 score.



500
1000
1500
2000
2500
3000
3500

4000 *
) 0 1000 2000 30000 1000 2000 3000 1000 2000 3000 1000 2000 3000

Figure 5: Validation set predictions from different models. From left to right are: ground truth, 3D
ViT, UNet, UNet-ViT.
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In addition, we apply recall and precision to measure the performance of the model against the
unknown data. Some models display non-deterministic results. On some runs, the Sorensen Dice

training DSC 1t recall 1 precision 1

Methods | steps rand. flip patchsize samplesize | train  val | train val | train  val
3DCNN | 6000 X 64 512 nan nan | nan nan | nan  nan
3D ViT | 6000 X 64 512 nan 0.00 | 0.00 0.00 | nan 0.22
UNet 6000 X - 512 098 0.21 | 096 0.20 | 098 0.22
UNet-ViT | 6000 X 64 1024 0.70 021 | 0.35 0.19 | 0.86 0.21
UNet-ViT | 6000 v 64 1024 0.00 0.18 | 0.00 0.37 | 0.03 0.15

Table 1: Quantitative results

coefficient (DSC), recall, and precision produce a NaN result. Observing our models, the base UNet
generally produces the best results, achieving significant performance differences compared to other
models. This difference is illustrated in the ink reconstructions.

6 Discussion and Conclusion

We were excited to come up with and try out a variety of models, but sadly, most models experienced
severe instability during training. 3D ViT simply failed to converge during overfitting tests. It rapidly
degenerated and predicted every pixel as no-ink.

The recreated 3DCNN suffered from very similar issues. In cases where the model was able to
generate an output, the image was very noisy. More often than not the model would fail to output a
valid image. In these degenerate labellings, none or all of the pixels would be classified as containing
ink.

UNet-ViT showed promising results in the overfitting test, even though it failed to generalize well on
the validation set. The instability of the model can be further illustrated by comparing its performance
with the addition of random flips. While UNet-Vit converged successfully on the training set, it
was unable to converge on a slightly more difficult setting with data augmentation. We suspect the
instability is caused by the imbalance of positive and negative pixels. We further attempted to combat
the data imbalance by incorporating focal loss and dice loss, which sadly yielded similar unstable
results.



Most surprisingly, the model that outperforms the rest is vanilla UNet. UNet converged almost
instantly and was able to fit to the training set perfectly. Evidently, none of our models were able
to generalize to unseen images. We offer two possible reasons: (i) the training dataset is extremely
small, containing only three fragments, (ii) the conditions under which the fragments were scanned
could be very different for every fragment, meaning that the ink could reside in a varying range of
slices.
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